
Noise effects in the ac-driven Frenkel-Kontorova model

Jasmina Tekić,1,* Dahai He,1 and Bambi Hu1,2

1Department of Physics, Centre for Nonlinear Studies and The Beijing-Hong Kong-Singapore Joint Centre
for Nonlinear and Complex Systems (Hong Kong), Hong Kong Baptist University, Hong Kong, China

2Department of Physics, University of Houston, Houston, Texas 77204-5005, USA
�Received 25 August 2008; revised manuscript received 10 December 2008; published 19 March 2009�

The noise effects on dynamical-mode-locking phenomena in the ac-driven dissipative Frenkel-Kontorova
model are studied by molecular-dynamics simulations. It was found that the noise strongly influences the
properties of the Shapiro steps and the way they respond to the changing of system parameters. The increase
of temperature produces the melting of the Shapiro steps, while the critical depinning force is significantly
reduced. The oscillatory form of the amplitude dependence is strongly affected where the Bessel-like form
changes as the temperature increases. In the frequency dependence of the Shapiro steps, due to the decrease of
the dc threshold value, noise may transfer the system to the high-amplitude regime where oscillations of the
step width with frequency or period of the ac force appear. These phenomena will additionally destabilize the
steps in real systems and significantly limit the region of parameters where dynamical-mode-locking phenom-
ena could be observed.
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I. INTRODUCTION

In recent years, due to possible technical applications of
interference effects, the influence of noise on dynamical
mode-locking phenomena has been the subject of extensive
theoretical and experimental studies in systems such as
charge-density-wave conductors �1–3� and systems of
Josephson-junction arrays biased by external currents
�4–10�. Numerous experimental and theoretical results and
the great complexity of these dissipative many-body systems
have stimulated studies of the dissipative �overdamped�
Frenkel-Kontorova �FK� model as one of the simplest among
many-body models, but still complex enough that it can cap-
ture the essence of many physical phenomena. Motivated by
the great significance of the noise problem for experiments
and technical applications, in this work, we will study the
noise effects on the �dc+ac�-driven overdamped FK model.

The one-dimensional standard FK model represents a
chain of harmonically interacting particles subjected to a
sinusoidal substrate potential �11�. It describes different com-
mensurate or incommensurate structures that show very rich
dynamical behavior under an external driving force. While
extensive studies have been performed on the dc-driven FK
model, a relatively small number of studies have been dedi-
cated to the FK model driven by periodic forces �12�. The
dynamics of the �dc+ac�-driven FK model is characterized
by the appearance of the staircase macroscopic response or
Shapiro steps in the curve for average velocity as a function

of the average external driving force v̄�F̄� �12�. These steps
are due to interference or dynamical mode-locking of the
internal frequency �which comes from the motion of par-
ticles over periodic substrate potential� with the frequency of
an external ac force �12,13�. Dynamical mode locking is only

possible if the set of ground states is discrete and appears to
be one of the universal features of the systems with the com-
petition of time scales in the ac-driven dynamics.

In the present paper, we will examine how thermal noise
affects the dynamics of the commensurate structures in the
�dc+ac�-driven overdamped FK model—in particular, how it
affects the existence and the properties of the Shapiro steps
�the incommensurate structures that are characterized by the
dynamical Aubry transition �12� represent a different prob-
lem and will be part of our future examinations�. We have
been not only interested in how the step size and the critical
depinning force change, but also how the noise influences
the amplitude and frequency dependence of the steps �14�. It
was shown that besides the melting of the Shapiro steps and
strong decrease of the critical depinning force, noise can
completely change the properties of the steps and the way
they respond to the changing of system parameters. While
the well-known Bessel-like oscillations with amplitude
change their form under noise, in the case of frequency de-
pendence, noise may transfer the system to the high-
amplitude regime where oscillations of the step size with
frequency appear. In our previous studies of the standard FK
model �T=0� �14�, we have shown that oscillations of the
step width with frequency appear if the system is in the high-
amplitude regime Fac�Fc0 �the applied ac amplitude is
larger than the dc threshold�. The fact that these oscillations
have been observed in the standard FK model raises a serious
question, whether they are only a peculiarity of the FK
model or they could exist and be relevant in real systems.
Our studies of the same phenomena in a realistic system
have shown that these oscillations of the step width with
frequency may not only exist in real systems, but environ-
mental effects such as noise can even contribute to their ap-
pearance �14�. Here we will present additional results ob-
tained in the presence of noise that prove the existence and
universality of these phenomena and their importance for
experiments and technical applications of the interference ef-
fects.
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The paper is organized as follows. The model is intro-
duced in Sec. II. Simulation results are presented and ana-
lyzed in Sec. III, where the influence of noise on the ampli-
tude dependence is discussed in Sec. III A and on the
frequency dependence in Sec. III B. Finally, Sec. IV con-
cludes the paper.

II. MODEL

We consider the dissipative �overdamped� dynamics of a
series of coupled harmonics oscillators ul subjected in a sinu-
soidal substrate �pinning� potential:

V�u� =
K

�2��2 �1 − cos�2�u�� , �1�

where K is the pinning strength. The system is driven by dc
and ac forces:

F�t� = F̄ + Fac cos�2��0t� . �2�

The equation of motions is

u̇l = ul+1 + ul−1 − 2ul − V��ul� + F�t� + Ll�t� , �3�

where l=− N
2 , . . . , N

2 and the thermal noise satisfies
�Ll�t�Ll�t���=2T��t− t��.

When the system is driven by homogenous periodic force,
the competition between two frequency scales �the frequency
�0 of the external periodic ac force and the characteristic
frequency of the motion over the periodic substrate potential

driven by the average force F̄� can result in the appearance of
synchronization phenomena �resonance�. If ul�t� is the solu-
tion of Eq. �3�, then the transformation

�i,j,m�ul�t�� = �ul+i�t − m/�0� + j� �4�

produces another solution, where i, j, and m are integers. The
solution is called resonant if there is a triplet of integers such
that it is invariant under the symmetry operation as follows:

�i,j,m�ul�t�� = �ul�t�� . �5�

The average velocity of the resonant solution is given by
�12�

v̄ =
i� + j

m
�0, �6�

where the interparticle average distance �winding number�
�= ��ul+1−ul�� �� is rational for the commensurate and irra-
tional for the incommensurate structures�. When m=1, the
resonant solutions and the steps are called harmonic, while
when m�1, the steps are called subharmonic �m=2 for frac-
tional or half-integer steps�.

Equation �3� has been integrated using periodic boundary
conditions for the commensurate structure �= 1

2 �two par-
ticles per potential well�. The time step used in the simula-
tions was 0.001	, and a time interval of 100	 was used as a
relaxation time to allow the system to reach the steady state
�system size and commensurability effects have been tested;
they are important only at very high temperatures T�1�. The
force was varied with step 10−4. The response function

v̄�F̄�—in particular, the step width and the critical depinning
force—is analyzed for different amplitudes and frequencies
of the ac force, at different levels of noise �the system is
considered to be on the step if the changes of v̄ are less than
0.1%�.

III. RESULTS

In �dc+ac�-driven systems, the presence of the ac force
induces additional polarization energy into the system that is
different from zero �less than zero� only when the velocity
reaches the resonant values, while at the same time, the av-
erage pinning force will also be different from zero. The
system will get locked since the average pinning energy of
the locked state �on the step� is lower than in the unlocked

state. As F̄ increases, the particles will stay locked until the

pinning force can cancel the changes of F̄. However, the
presence of thermal noise will bring an additional contribu-
tion to the energy of particles and, therefore, strongly affect
the mode-locking and the stability of the steps. The existence
and robustness �structural stability� of the resonant solutions
are always the main focus in the examination of interference
phenomena.

In Fig. 1, the response function v̄�F̄� for the commensu-
rate structure �= 1

2 is presented for different values of the
temperature.

As T increases, the Shapiro steps start to melt, becoming
more and more rounded, and completely disappear; mean-
while, the critical depinning force Fc also decreases. At high
temperature, the pinning potential can be neglected and the
system behaves as a system of free particles. Melting is not
the only effect that noise induces; it also changes the prop-
erties of the Shapiro steps and their behavior towards the
changing system parameters. Further, we will present a de-
tailed analysis of the amplitude and frequency dependence of
the step width and the critical depinning force in the pres-
ence of noise. We will consider only the behavior of the
harmonic steps, since in the standard FK model, subhar-
monic steps appear only for rational noninteger values of �.
However, even at T=0 their size is too small �12�, and at any
temperature different from zero they disappear. Large sub-
harmonic steps can appear in the nonstandard FK model,
such as one with an asymmetric deformable substrate poten-

FIG. 1. Average velocity as a function of the average driving
force for �= 1

2 , K=4, Fac=0.2, and �0=0.2 and different values of
the temperature T=0, 0.0001, 0.002, 0.005, and 0.01.
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tial �15�. There, subharmonic steps appear as a result of the
deformation of substrate potential.

A. Amplitude dependence of Shapiro steps
in the presence of noise

In Figs. 2�a� and 2�b�, the decrease of the step width 
F
for the first harmonic �v̄= 1

1��0� and the critical depinning
force Fc with the increase of temperature for different values
of amplitude are presented.

As we can see, with the increase of T, the step width and
the critical depinning force decrease to zero �which is in
agreement with experiments �4,5��, where the reduction
strongly depends on the amplitude of the ac force. It is well
known that 
F and Fc exhibit Bessel-like oscillations with
the ac amplitude �2,14,19–21�, where the maxima of one
curve correspond to the minima of another. Therefore, in Fig.
2�a�, the step size has the largest value for Fac=0.38, which
corresponds to the maximum step size �the first maximum of
the Bessel function�; meanwhile, in Fig. 2�b�, this value of
the ac amplitude corresponds to the lowest curve. During the
examination, we have also observed that the increase of Fac
reduces the rounding of the steps due to the noise.

Variations of the step width for the first harmonic and the
critical depinning force with the ac amplitude at different
values of T are shown in Figs. 3�a� and 3�b�, respectively.

The step width and the critical depinning force oscillate at
all temperatures; however, the Bessel form of oscillations
completely changes due to the noise.

These Bessel-like oscillations of the step size with ampli-
tude appear due to back and forward displacement of par-
ticles induced by the ac force. Namely, in �dc+ac�-driven
systems, the dynamics is characterized by a combination of

the two types of motions: linear motion in the direction of
the dc force and backward and forward jumps due to the ac
force. Therefore, due to the presence of dc and ac forces, the
particles perform motion that consists of a series of back-
ward and forward jumps, where the ac amplitude determines
how much this motion is retarded �2�. In Fig. 4, the motion
of one particle during one period of ac force is presented. If
we consider a particle at the site i, then during one period, a
particle will first jump n sites backward, reach the i−n site,
and then hop again n+1 sites forward to the site i+1. During
the next period, it will repeat again these backward and for-
ward jumps and move to the site i+2. In that way, by repeat-
ing these backward and forward jumps with every period of
the ac force it will move. The distance �the number of sites,

FIG. 2. The width 
F of the first harmonic step in �a� and the
critical depinning force Fc in �b� as functions of temperature for
�= 1

2 , K=4, �0=0.2, and Fac=0.2, 0.38, and 0.5.

FIG. 3. The width 
F of the first harmonic step in �a� and the
critical depinning force Fc in �b� as functions of the ac amplitude
for �= 1

2 , K=4, �0=0.2, and T=0, 0.001, 0.002, and 0.004.

FIG. 4. The motion of a particle during one period of the ac
force, where n=0,1 ,2 , . . .. is the number of sites over which the
particle moves.
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n� over which particles moves during these backward and
forward jumps is determined by the amplitude of the ac force
�2�. For the values of the ac amplitude that correspond to the
first maximum in Fig. 3�a�, particles will spend most of the
time on the site and then hop to the next well, while for the
values at the second maximum, particles will jump one site
backward and two forward. As the ac amplitude increases,
the particles will hop between wells that are more and more
distant while spending less time on the sites, and conse-
quently, the step width will decrease. If the noise is present,
the behavior will completely change due to the additional
contribution to the energy of the particles. While at T=0 the
maxima of the Bessel function decrease as the number of
sites between which particles move increases, in the presence
of noise, due to the additional energy contribution, even for
the value of Fac that corresponds to the first maximum, par-
ticles will have possibility to move between more distant
sites, and consequently, the first maxima will be significantly
reduced while the Bessel-like form will disappear.

In Fig. 3�a�, we can clearly see that the noise induces a
rounding of the minima and significant reduction of the
maxima. The largest reduction of the step size is on the first
maximum, and as T increases, all maxima become of the
same height. Similar also happens in Fig. 3�b�, where at
Fac=0, we can see the reduction of the dc threshold limit Fc0.
The rounding of steps in Fig. 1 and the rounding of minima
and the reduction of maxima �respect to the theoretical val-
ues� in Fig. 3 have been always observed in experiments, and
the origins of these effects have been often a matter of dis-
cussion in charge-density-wave systems �the well-known
single-particle model in charge-density-wave systems does
not predict a rounding of the minima of the Bessel oscilla-
tions with amplitude� �2� and systems of Josephson junction
arrays �10�. Our results show that noise is one of the factors
that could be responsible for these effects.

B. Frequency dependence of Shapiro steps
in the presence of noise

A decrease of the step width 
F for the first harmonic and
the critical depinning force Fc with an increase of tempera-
ture for different values of the frequency is presented in Figs.
5�a� and 5�b�.

It was shown previously that in the standard FK model,

F increases with frequency, reaching its maximum, and
then slowly decreases to zero; meanwhile, Fc increases and
saturates to a frequency-independent threshold value at high
frequencies �14�. Therefore in Fig. 5�a�, 
F has the largest
value for �0=0.25, which corresponds to the maximum step
width, while in Fig. 5�b�, we obtained a family of curves for
Fc that increases as the frequency increases.

The first harmonic step width 
F as a function of fre-
quency in Figs. 6�a� and 6�b� and as a function of period in
Figs. 6�c� and 6�d� at two different values of temperature is
presented.

As we can see in Figs. 6�a� and 6�b�, the presence of noise
not only results in a strong reduction of 
F, but completely
changes the behavior of the steps by inducing nonmonotonic
increase at low frequencies.

These low-frequency oscillations are even better revealed
and their physical origin understood if the step width is plot-
ted as a function of period � 1

�0
�, in Figs. 6�c� and 6�d�. With

an increase of T, the dc threshold Fc0 decreases. Therefore,
the system may change from the low-amplitude regime Fac
�Fc0 to the high one Fac�Fc0. For the case in Figs. 6�a� and
6�c�, at T=0, Fac�Fc0 since the system is driven by the ac
force with amplitude Fac=Fc0=0.2544. However, at T
=0.004 in �b� and �d�, the dc threshold decreases to Fc0
=0.1567, and the system is now in the high-amplitude re-
gime Fac�Fc0.

Appearance of low-frequency oscillations when Fac
�Fc0 is the result of the simultaneous competition and con-
tributions of the dc and ac components of F�t� to the pinning

FIG. 5. The width 
F of the first harmonic step in �a� and the
critical depinning force Fc in �b� as functions of temperature for
�= 1

2 , K=4, Fac=0.2, and �0=0.2, 0.25, and 1.

FIG. 6. The width 
F of the first harmonic step as a function of
frequency �0 in �a� and �b� and as a function of period 1

�0
in �c� and

�d� for �= 1
2 , K=4, Fac=Fc0=0.2544, and T=0 and 0.004.
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energy. When
Fac

Fc0
�1, the ac contribution, which is respon-

sible for the appearance of these oscillations, will dominate.
In the same way as in the case of Bessel-like oscillations
with amplitude in Sec. III A, these oscillations with period
appear due to the backward and forward motion of particles
induced by the ac force �presented in Fig. 4�, where not only
the ac amplitude, but also the period �frequency� determines
how much this motion is retarded. Therefore, as in the case
of amplitude dependence, for values of the period that cor-
respond to the first maximum in Fig. 6�d�, particles will
spend most of the time on the site and then hop to the next
well, while for values at the second maximum, particles will
jump one site back and two forward. As the period increases,
the particles will hop between the wells that are more and
more distant while staying less and less time on the sites, and
consequently, the step width will decrease.

If the ratio
Fac

Fc0
increases, the oscillations will spread more

towards higher frequencies, while the maxima will increase,
and for

Fac

Fc0
�1, the oscillatory behavior will dominate. The

step width 
F of the first harmonic as a function of �0 for
three different values of

Fac

Fc0
is presented in Fig. 7.

We can clearly see that the oscillations are moving to the
higher frequencies with much higher and more pronounced
maxima as Fac increases. For the lowest value of

Fac

Fc0
, the

steps are unstable for �00.11, while for the highest one,
they are unstable for �00.18.

The step width of the first harmonic and the critical de-
pinning force as the functions of 1

�0
at four different values of

temperature are presented in Figs. 8�a� and 8�b�, respectively.
The system is driven by the ac force with amplitude Fac

=0.5, and at T=0, the system is already in the high-
amplitude regime Fac�Fc0. These results in Fig. 8 compared
with the results for the amplitude dependence in Fig. 3
clearly reveal an analogy between the amplitude and the pe-
riod of the ac force. Not only that, the oscillations have a
form very similar to the Bessel-like oscillations of the step
width with amplitude where maxima of 
F curves corre-
spond to the minima of Fc curves, but they will change due
to the noise in the same way as in the case of amplitude
dependence. Noise will produce the rounding of minima and
a significant reduction of the maxima where the Bessel-like
form will be changed. These results prove again that the
increase of the period has a similar effect on the backward

and forward motion of particles and, therefore, on the step
size as the increase of amplitude. A displacement between
more distant sites will appear only if the amplitude is high
enough or the period is long enough.

It is interesting to note that the conclusion that the ratio
Fac

Fc0
must play an important role in ac-driven dynamics can be

made even intuitively without any calculation or numerical
analysis by simply analyzing the driving force given in Eq.
�2�. In the zero-frequency limit the driving force has the form

F��0 → 0� = F̄ + Fac. �7�

If Fc0 is the dynamical dc threshold, then the critical depin-

ning force at �0=0 or the value of F̄ at which the particles
depin is given by

Fc��0 → 0� = Fc0 − Fac. �8�

This can be clearly seen from the numerical results in our
previous works �14�. However, this is correct only if Fac
�Fc0, which naturally raises the question what will happen
if Fac�Fc0 and, from there, the conclusion that the point
Fac=Fc0 must be of some importance. The value

Fac

Fc0
=1 is

exactly the point when the frequency dependence of the sys-
tem will change and the oscillatory behavior will appear if
Fac�Fc0.

The appearance of these oscillations may create additional
problems in the experiments or technical applications of the
interference phenomena. It is well known that the steps are
less rounded and better defined if the ac amplitude increases.
However, an increase of Fac in order to tackle the rounding
of steps due to noise while simultaneously Fc0 is getting even
reduced could have a completely contrary effect if the ratio

FIG. 7. The width 
F of the first harmonic step as a function of
�0, for �= 1

2 , K=4, T=0.004, Fc0=0.1567, and Fac=0.2, 0.2544,
and 0.5.

FIG. 8. The width 
F of the first harmonic step and the critical
depinning force Fc as functions of 1

�0
, for �= 1

2 , K=4, Fac=0.5, and
T=0, 0.001, 0.002, and 0.004.
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reaches the value where
Fac

Fc0
�1, in which case, the oscilla-

tions of the Shapiro steps will become pronounced and
spread even to high frequencies. Therefore, in real systems,
all factors that may significantly change the ratio

Fac

Fc0
�other

factors such as deformations and impurities may change Fc0�
must be taken into account, and the parameter of the system
should be adjusted in a way that

Fac

Fc0
is either smaller or

around 1; otherwise, the instability region with oscillations
will spread to higher frequencies.

The frequency dependence of Shapiro steps, particularly
the importance of degrees of freedom, has been a matter of
many controversies. In charge-density-wave �CDW� sys-
tems, two competing and fundamentally different theories
have been proposed. According to the classical approach
�16,17�, which considers a deformable charge elastic me-
dium with internal degrees of freedom, the step width and
the critical depinning force should be strongly frequency de-
pendent and decrease to zero at high frequencies. In contrast,
in the theoretical approach based on tunneling theory �2�,
where the CDW conductor is treated as a macroscopic quan-
tum system, tunneling of the CDW between the pinned states
results in a frequency-independent mode locking at high fre-
quencies. According to a simple single coordinate model mo-
tivated by tunneling theory �2�, it was proven analytically �in
the high-frequency limit� and experimentally that the maxi-
mum step width is proportional to the magnitude of the fun-
damental component of the effective pinning force that is
independent of frequency at high frequencies. In systems
with Josephson-junction arrays, according to the single-
junction model �18–20�, the width of harmonic steps remains
frequency independent at high frequencies. On the other
side, in models with many degrees of freedom �21,22�, an
amplitude and frequency dependence significantly different
from the single-junction case and the disappearance of steps
at high frequencies have been observed �single-junction
models do not work well if the system is disordered �22��.
The overdamped FK model is a classical many-body model,
and as in other systems with many degrees of freedom, the
steps will remain strongly frequency dependent and disap-
pear at high frequencies. The fact that the oscillatory depen-
dence with frequency has been observed in the FK model
consequently raises the question how this phenomenon is
related to the presence of many degrees of freedom in the
systems. In order to examine whether these frequency oscil-
lations appear in single-degree-of-freedom systems, we have
also analyzed the commensurate structure with winding
number �=1, for which the FK model reduces to the single-
particle model at T=0 �12�. As was shown in our previous
work at T=0 �14� and any temperature for which Shapiro
steps exist, we have observed these oscillations in any com-
mensurate structure always when

Fac

Fc0
�1 and irrespectively

of the number of degrees of freedom.
The important question that arises from all our studies of

this phenomenon is whether these oscillations with fre-
quency �period� could be observed in experiments. The
Bessel-like oscillations with amplitude have been studied in

many experiments in CDW systems �2� and the system of
Josephson-junction arrays �5,6�. If the period plays the same
role as the amplitude in the ac-driven dynamics, we believe
that then, in the same experiments where Bessel-like oscilla-
tions with amplitude have been observed, the oscillations
with the period should be also observable �especially if

Fac

Fc0

�1�. The CDW systems could be a particularly good candi-
date since the physics behind the interference phenomena is
similar to the one presented here �the similar physical picture
that is presented in Sec. III A and in Fig. 4 is used to explain
the amplitude dependence of the charge density waves �2��.

IV. CONCLUSION

In this paper we have presented a detailed study of the
noise effects on the dynamical mode-locking phenomena in
the ac-driven overdamped Frenkel-Kontorova model. The
presented results have shown that the noise has a strong im-
pact on the interference phenomena where besides producing
the melting of the Shapiro steps and the reduction of the
critical depinning force, it also influences the amplitude and
frequency dependence of the Shapiro steps and the way they
respond to the changing of the system parameters. Although
the steps maintain an oscillatory dependence of the ampli-
tude in the presence of noise, the well-known Bessel-like
form of oscillations is completely changed. The most inter-
esting is the influence of noise on the frequency dependence.
By decreasing the dc threshold value, noise can transfer the
system to the high-amplitude regime, and by that, it can in-
duce oscillations of the step width with frequency. This in-
teresting phenomenon will appear always when the ratio
reaches the value

Fac

Fc0
�1 in any commensurate structure and

irrespectively of the number of degrees of freedom. Analyz-
ing the step width as a function of period in the presence of
noise again confirms the analogy between the amplitude and
the period of the ac force in the ac-driven dynamics.

The presented results could be of great importance for all
real systems with overdamped motion and driven by periodic
forces such as charge- or spin-density-wave systems �1,3,23�,
vortex lattices �24,25�, and the systems of Josephson-
junction arrays �4–10�. The phenomena of the CDW in sol-
ids, which account for the anomalous transport properties,
and the studies of Josephson-junction arrays are closely re-
lated to the dissipative dynamics of the FK model �1,12�.
Any technical application of the interference phenomena and
the building of Shapiro-step devices �7� requires a theoretical
guideline for the observation of Shapiro steps where in the
understanding of environmental effects, the most important
one is certainly the noise effect. The phenomena that we
have observed are directly related to the existence and sta-
bility of resonant solutions in real systems, which is crucial
in any application of interference effects.
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